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Model formulation

Here we document the model formulation process. To begin, we will consider the response variables

Yij =

{
1, ith state votes Democrat in election year j

0, ith state votes Republican in election year j.

The standard regression framework is no longer applicable here because it is not reasonable that
the Y ’s are normally distributed, i.e. the errors are not normally distributed. Also, a model of the
form

Y = Xβ + ε

does not guarantee that the predicted value will be between 0 or 1. Therefore, we will consider a
probit link model,

P (Yij = 1 | Xij) = Φ(Xijβ),

where Xij is a vector of covariates for the ith state during the jth election year. Additionally, we do
not have the assumption that the Y ’s are independent because surrounding states have influence
over each other. Specifically, if South Carolina votes Republican, then Georgia is likely to vote
Republican. Therefore, we consider a spatial random effects model of the form

P (Yij = 1 | Xij) = Φ(Xijβ + bi)

where bi represents the spatial random effect for state i in any election year, succinctly written as
b = (b1, ..., bn)′ ∼ CAR(τ2, ρ), i.e. b ∼ N

(
0, τ2(D − ρW)−1

)
, where D is a diagonal matrix with

entries Dii =
∑n

k=1Wik, Wik = 1 if the ith spatial unit is a neighbor of the kth spatial unit, and
Wik = 0 otherwise with the convention that Wii = 0. Under this formulation, the likelihood is

L(β,b | Y) =

51∏
i=1

J∏
j=1

(
Φ(Xijβ + bi)

)Yij(1− Φ(Xijβ + bi)
)1−Yij ,

where J is the number of election years being considered. However, we will have no hope of
implementing a Gibbs sampler. To remedy this, we will perform a data augmentation step. Namely,
consider

Zij ∼ N(Xijβ + bi, 1) where zij > 0 if Yij = 1, and zij < 0 if Yij = 0.
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Then, we can reformulate our likelihood to the equivalent form of

L(β,b,Z | Y) =

51∏
i=1

J∏
j=1

φ(zij −Xijβ − bi)
[
I(zij > 0, Yij = 1) + I(zij < 0, Yij = 0)

]
.

To capture data sets over different election years, we will implement a matrix G whose rows identify
which state the observation belongs to. Therefore, we can control which random effect is being
placed on observation i, j. As a result, our likelihood function becomes can now be written as

L(β,b,Z | Y) ∝ exp

{
−1

2
(Z−Xβ −Gb)′(Z−Xβ −Gb)

}
51∏
i=1

J∏
j=1

[
I(zij > 0)I(Yij = 1) + I(zij < 0)I(Yij = 0)

]
.

To complete the model formulation, we impose the following prior specifications:

β ∼ N(a,R)
τ2 ∼ IG(aτ , bτ ).

Denote Σ =
(
D− ρW

)−1
. Combining all of this, the joint posterior distribution is

π(β,b, τ2,Z | Y) ∝ exp

{
−1

2
(Z−Xβ −Gb)′(Z−Xβ −Gb)

}
·

51∏
i=1

J∏
j=1

[
I(zij > 0)I(Yij = 1) + I(zij < 0)I(Yij = 0)

]
× exp

{
−1

2
(β − a)′R−1(β − a)

}
×
(
τ2
)− 51

2 exp

{
− 1

2τ2
b′Σb

}
×
(
τ2
)−aτ−1 exp

{
− bτ
τ2

}
.

By inspection, we see that the latent variables have the marginal posterior distribution

Zij | β, bi,Y ∼

{
TN

(
Xijβ + bi, 1, (0,∞)

)
, if Yij = 1

TN
(
Xijβ + bi, 1, (−∞, 0)

)
, if Yij = 0.

The posterior distribution for the regressors is

π(β | else) ∝ exp

{
−1

2

[
(Z−Xβ −Gb)′(Z−Xβ −Gb) + (β − a)′R−1(β − a)

]}
.

After some algebra, we find that β | Z,b,Y ∼ N(µ,C), where

µ = (X′X + R−1)−1
(
R−1a + X′(Z−Gb)

)
C = (X′X + R−1)−1.
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The posterior distribution of the spatial random effects is

π(b | else) ∝ exp

{
− 1

2τ2

[
τ2(Z−Xβ −Gb)′(Z−Xβ −Gb) + b′Σb

]}
.

Therefore, b | β,Z, τ2 ∼ N
(
(τ2G′G+Σ)−1

(
τ2G′(Z−Xβ)

)
, (τ2G′G+Σ)−1

)
. Lastly, the posterior

of τ2 is easily seen as

τ2 ∼ IG
(

51

2
+ aτ ,

1

2
b′Σb + bτ

)
.

Simulation study

To assess our model’s ability of distinguishing significant covariates and insignificant covariates, a
simulation study was performed. The true covariates from the subsequent data application section
were used. The probability of success, i.e. P (Yij = 1 | Xij), was generated for all i, j and a set of
observations were generated from this. We performed the Gibbs sampler algorithm developed in
the model formulation section for each data set and repeated this process for 250 total data sets.
To assess the mixing of a single chain, below are the MCMC plots β and τ2. The first four plots
are the significant covariate coefficients with a true value of 1, 2, and 3, and τ2 set to 1.
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The next seven plots are for the insignificant coefficients.
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Overall, it appears that the chain has converged for all parameters and is mixing very well. The
significant parameters appear to be picked up and the insignificant parameters stay close to 0 and
do not deviate away. Therefore, the model seems to be doing a good job of flagging significant
covariates and not flagging insignificant covariates. To back this claim, for each data set, we
reported the arithmetic mean of the last 5000 estimates from the Gibbs sampler. After doing this
for all 250 data sets, we averaged these arithmetic means to obtain:

Parameter True Estimate

β1 1 1.770
β9 2 2.815
β10 3 4.209
τ2 1 1.201

These estimates give rise to the fact that the model is doing a decent job at identifying the significant
covariates and estimating their true values on the correct magnitude. It is worth noting that the
largest estimate for the insignificant covariates was 0.465 and the smallest estimate was 0.131.

Data application

The data consists of the past 5 elections, i.e. 255 observations. The covariates that were available
are education, race, median household income, and unemployment rates for all states in the 5 past
elections. More specifically, for education we considered for each state the (x1) percentage of an
advanced degree, the (x2) percentage of only Bachelor’s degree, the (x3) percentage of only High
School diploma, and the (x4) percentage of no High School diploma. For race, we considered the
(x5) percentage of those that are white, (x6) percentage of black, (x7) percent hispanic, and (x8)
percent asian. These covariates were kept constant across the 5 election years as a result of lacking
data and would probably not change drastically across years. For (x9) median household income
and (x10) unemployment rate, we used available data to include the income and unemployment
rate for each state during each election year. This constitutes our design matrix. Our goal is to
predict the outcomes for this election year. Running the Gibbs sampler, we get the mean estimates

β1 = 1.212 β2 = −0.517
β3 = −0.223 β4 = −0.754
β5 = 0.655 β6 = 0.319
β7 = 0.719 β8 = 1.462
β9 = −0.320 β10 = 0.511.

We report the 95% HPD intervals of these parameters, which are

Parameter HPD interval Parameter HPD interval

β1 [−2.059, 4.609] β2 [−2.724, 1.764]
β3 [−4.617, 4.473] β4 [−3.505, 1.939]
β5 [−1.187, 2.488] β6 [−0.991, 1.636]
β7 [−0.619, 2.076] β8 [0.159, 2.882]
β9 [−0.703, 0.057] β10 [0.194, 0.845].

Based on the HPD intervals, the only significant covariates are the percent of asian people in the
state and the unemployment rate. This goes slightly against intuition. Of course, unemployment
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is expected to be related to voting, and also race. However, the other races should be significant
as well, and probably would have different voting habits. However, we did not consider model
selection and therefore use these parameter estimates to generate the predictions. We used the
covariates available to us for this years presidential election to generate

P (Yi = 1 | Xi) = Φ(Xiβ + bi)

for i = 1, ..., 51 using the last 50,000 iterates of β and bi. Therefore, for each state we obtain 50, 000
samples of P (Yi = 1 | Xi) and then we take the average of these. The outcomes are as follows:

P (Y1 = 1 | X1) = 0.138 P (Y2 = 1 | X2) = 0.120 P (Y3 = 1 | X3) = 0.605
P (Y4 = 1 | X4) = 0.105 P (Y5 = 1 | X5) = 0.980 P (Y6 = 1 | X6) = 0.525
P (Y7 = 1 | X7) = 0.998 P (Y8 = 1 | X8) = 0.961 P (Y9 = 1 | X9) = 0.999
P (Y10 = 1 | X10) = 0.704 P (Y11 = 1 | X11) = 0.328 P (Y12 = 1 | X12) = 0.994
P (Y13 = 1 | X13) = 0.137 P (Y14 = 1 | X14) = 0.979 P (Y15 = 1 | X15) = 0.492
P (Y16 = 1 | X16) = 0.607 P (Y17 = 1 | X17) = 0.199 P (Y18 = 1 | X18) = 0.472
P (Y19 = 1 | X19) = 0.199 P (Y20 = 1 | X20) = 0.980 P (Y21 = 1 | X21) = 0.975
P (Y22 = 1 | X22) = 0.998 P (Y23 = 1 | X23) = 0.978 P (Y24 = 1 | X24) = 0.855
P (Y25 = 1 | X25) = 0.104 P (Y26 = 1 | X26) = 0.491 P (Y27 = 1 | X27) = 0.069
P (Y28 = 1 | X28) = 0.088 P (Y29 = 1 | X29) = 0.928 P (Y30 = 1 | X30) = 0.849
P (Y31 = 1 | X31) = 0.992 P (Y32 = 1 | X32) = 0.755 P (Y33 = 1 | X33) = 0.998
P (Y34 = 1 | X34) = 0.267 P (Y35 = 1 | X35) = 0.016 P (Y36 = 1 | X36) = 0.690
P (Y37 = 1 | X37) = 0.043 P (Y38 = 1 | X38) = 0.960 P (Y39 = 1 | X39) = 0.944
P (Y40 = 1 | X40) = 0.993 P (Y41 = 1 | X41) = 0.076 P (Y42 = 1 | X42) = 0.025
P (Y43 = 1 | X43) = 0.243 P (Y44 = 1 | X44) = 0.155 P (Y45 = 1 | X45) = 0.101
P (Y46 = 1 | X46) = 0.964 P (Y47 = 1 | X47) = 0.780 P (Y48 = 1 | X48) = 0.958
P (Y49 = 1 | X49) = 0.315 P (Y50 = 1 | X50) = 0.932 P (Y51 = 1 | X51) = 0.089.

We will use the idea that if P (Yi = 1 | Xi) > 0.5, then state i will vote Democrat this year.
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